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LETTER TO THE EDITOR 

On the theory of anomalous elastic properties of 
disordered Al-Li and Al-Mg alloys 
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I V Kurchatov Institute of Atomic Energy, Moscow 123182, USSR 

Received 20 April 1990 

Abstract. Calculations of the electronic structure, equilibrium volume 8, and elastic con- 
stants C,) for the disordered Al,-xLix and AII-,Mg, alloys have been performed. We 
use the virtual crystal approximation, first-principles pseudopotentials and the previously 
discussed method of calculating C,),  based on the density functional approach. The results 
describe fairly well all the peculiar features of the C,/(x) and Q,(x)  dependences in these 
alloys and show that the anomalies in these dependences are due to the band structure 
effects. 

The unusual atomic properties of the disordered All -xLi, alloys attract great attention. 
Lithium is a much softer and less dense metal than aluminium: its shear modulus, G, 
and Young modulus, E ,  are 4-5 times as small, while the atomic volume, a,  is 30% 
larger than those in Al. Nevertheless, the addition of Li to A1 (in the solubility region 
x s 0.14) results in a significant increase in G and E [l, 21 as well as in a contraction 
(rather than expansion) of the lattice [3,4], while the bulk modulus B decreases mono- 
tonically [2-4]. This increase of G (combined with other favourable properties) makes 
the A1-Li alloys highly interesting for technological applications [ l ,  21, which, in its turn, 
stimulates attempts to understand their unusual behaviour [1-4]. In particular, Noble et 
a1 [ 11 supposed that the increase in G is related to some changes in the electronic structure 
of the alloys but, apparently, there are no available microscopic considerations yet. In 
the Al-Mg system, analogous anomalies are much less pronounced and manifest only 
in a very slow decrease of E(x)  with increasing xMg [5]. 

At the same time, the possibility of anomalous variations of shear constants Css, in 
metals under certain changes in band structure were recently discussed by a number of 
authors [&lo]. It is mentioned, in particular, that the Csst values can increase (decrease) 
sharply when the Fermi level eF approaches the sharp minimum (maximum) point in 
the electron state density n(e) [8] and these effects appear to be displayed clearly in 
peculiar concentration dependences of Css, in some BCC transition metal alloys [6,7], as 
well as in anomalous pressure dependences of Css, for a number of alkali and alkaline 
earth metals [9, lo]. Since calculations of n(e)  for A1 seem to indicate the presence of 
the minimum in n ( ~ )  near and below eF [ l l ,  121, it is natural to suppose that the 
anomalous C,,(x) dependences in All-xLix and Ai1-,Mg, are connected with eF 
approaching the relevant minimum points of n(e) in the alloys. 

The treatments carried out in other works [&lo] were, mainly, qualitative and used 
simplified models. The consistent method for calculating Cssn in metals, based on the 
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density functional approach, was proposed in [ 131. Its efficiency and accuracy were 
demonstrated by calculations of Cij for Nb, MO and also for Ca and A1 [14]. To apply 
this method to a disordered alloy, one should use additional approximations, e.g. that 
of the virtual crystal (VCA), in which the A1-,B, alloy is described as a metal with 
the average pseudopotential V = (1 - x)V, + XV However, one may believe that it 
suffices to employ the VCA for elucidation of the main features of the concentration 
dependences under consideration, while the character of errors brought about by this 
approximation is qualitatively clear (see below). 

In the present paper we apply the VCA and methods used in other works [13,14] to 
the first-principles calculation of the electronic structure, equilibrium volume and elastic 
constants in the disordered alloys All-,Li, and Al,-,Mg,. Let us present the main 
relations. 

The expressions for the elastic constant Cijin a monatomic crystals (neglecting phonon 
and temperature effects) can be written as [ 131 

Cij = (1/N)(d2E/duiduj) = Cyd + C ,  + C: + C r .  (1) 
Here E and N are the total energy and number of atoms, ui is the homogeneous strain 
(in the Voigt notation), Cyad is the 'Madelung' term, i.e. the elastic constant of the 
point-ion lattice in the homogeneous compensating charge, and C$J' is the contribution 
to C ,  which arises due to the non-point-like character of ions [15] 

C!?ad 11 = b 11 .. Zt/Q4/3 Ctp = (1/52) lim (V(q,  q) + 4Ze2/Qq2)q+o (2) 

where b, denotes numerical coefficients determined only by the lattice geometry (see 
e.g. [lo]); V(q, , q 2 )  is the Fourier component of the non-local pseudopotential V ,  and 
Z is the ion valency. The term C$ in (1) corresponds to the band-structure energy 
contribution and is equal to a sum of contributions of the electronic states on the Fermi 
surface C y ,  and those in the Fermi volume, C y :  

Here E u  = E ,  - E ~ ,  E ,  and Q), are the energy and the wave function of the state v ;  He is 
the Hamiltonian for an electron in the ion lattice (without the electron-electron inter- 
action term Vee);  (rpAq) is the matrix element of the operator A between the states 9, 
and q; while e ( x )  is the step function equal to zero at x < 0 and unity at x > 0. The last 
term in (l) ,  Cy = C r  + C r  , corresponds to the corrections for double counting of the 
V,, contributions to C i  and consists of two terms, the exchange-correlation contri- 
bution, CY, and the direct Coulomb one, C r  

Here p(r)  is the electron density; E&) is the exchange-correlation energy for the 
homogeneous electron gas; y,, = d e X c / a p ;  8 i h  = ai, + ai2 + ai3, the integral in (4a) is 
taken over the elementary cell; g is the reciprocal lattice vector; and ng = Qpg , where 
p g  is the Fourier component of p(r) .  
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Figure 1. Curves: the density of electronic states, n ( ~ ) ,  in the vicinity of the Fermi level E~ 

versus the number of states, N(E). Curves A, B, C and D correspond to pure AI at Q/Q0 
values equal to 1, 1.02, 1.04 and 0.98; E and F, All-xLix alloys at x = 0.05 and x = 0.1; G, 
HandJ,Al,_,Mg,alloyswithQ = Qo(l +0.4x)atx=0.05,0.1and0.15;I,Alo9Mg,1alloy 
with 52 = Qo. The arrow at the curve indicates the ~ z ( E ~ )  value. Open symbols show values 
of ~ z ( E ~ )  versus N ( E ~ )  for various alloys; circles correspond to All -xLix alloys; triangles, 
All_,Mg, alloys with 8 = Qo(l + 0.4~). 

In calculations we employed the first-principles norm-conserving pseudopotentials 
of Bachelet et al [ 161 and the expression for E&), proposed by Perdew and Zunger [ 171. 
We used the basis of 137 plane waves in the FCC lattice and took 531 k-points in the 
integration over the 1/48 irreducible part of the Brillouin zone (BZ) with quadratic 
interpolation between them. The self-consistent procedure for finding the electron- 
electron interaction V,, and other computational details are described in [14]. For the 
atomic volume S2 in the Al-Li alloys, we took the value S2 = S2, = 110.6 au (cor- 
responding to pure A1 at T = 0 [4]), neglecting the previously mentioned small con- 
centration contraction d In Q/dx = -(3-5) X [3,4]. In the AII-,Mg, alloys, the 
contraction expansion d In Q/dx = 0.4 is noticeable [ l ,  181, and we have taken it into 
account. 

The results of the calculations are presented in figures 1, 2 and tables 1-3. Let us 
firstly discuss the electron state density n ( ~ )  near E ~ ,  which is presented in figure 1 versus 
the number of states in the valence band, N(E) 

N ( E )  = 1' n(d)  de'. 
-cc 

The values (counted off from the mean value of the pseudopotential, V(0,O) [ 131) are 
presented in tables 2 and 3. 

Figure 1 illustrates variations in n(e) with volume S2 and concentrationx in the alloys 
considered. Curves A, B, C and D show that the S2-dependence of n(e) is, generally, 
not strong. On the contrary, the change of n ( ~ )  with x in AlI-,Lix alloys is very sharp 
(unlike in the rigid-band model) and its drop at N = 2.9-2.95 sharpens significantly with 
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Table 1. Contributions to pressurep and moduli B ,  in Al. 

Calculation 
Experiment 

Quantity [18] Total Mad np b xc dC 

P 0 -2.0 -240.1 204.4 98.2 -64.8 0.3 
B 79.4 74.4 -320.2 408.8 70.0 -84.9 0.7 
8 3 3  26.3 25.9 16.6 0 11.0 0 -1.8 
8 4 4  31.7 26.2 149.0 0 -123.3 0 0.5 

t l  

2OC 

0 5 10 15 
x (at. % I  

Figure 2. Concentration dependence of elastic 
moduli in the AI-Li and AI-Mg alloys. Open sym- 
bols correspond to calculations, full symbols and 
crosses, to experiments (curves link the symbols 
as a guide to the eye). The curves A,  B and C (D, 
E and F) correspond to the values of E ,  B33 and 
B44 calculated for A1,-,Lix (AI,-xM&) alloys. 
Experimental data: circles denote E ( x )  for poly- 
crystal AI, -xLix [l];crosses, E ( x )  forsingle-crystal 
AI, _xLi, [2]; crossed-circles, E ( x )  for polycrystal 
All-,Mg, [5]; triangles, B 3 3 ( ~ )  for All-xLix [2]; 
squares, B 4 4 ( ~ )  for AI,-xLix [2]; asterisk, E for 
single-crystal AI at T = 0 [18, 191. 

risingx. The point of this drop, E ~ ,  corresponds to the states in the third band near the 
point K (or U) of the BZ, and atx = 0.05 the Fermi level EFreaches this point. The analysis 
shows that the enhancement of the n ( ~ )  singularity at E = E, is, mainly, connected with 
the flattening of the dispersion curves E, = E,@) near the K point and K-W line. For 
example, at x = 0, 0.05, and 0.1, values of E, = E ~ ( K )  are: 726, 734, and 741 mRyd, 
while the E ~ ( W )  ones are 765, 759, and 751 mRyd, respectively. Thus, the difference 
ATK = c3(W) - E ~ ( K )  drops by a factor of four. These variations in E,(P) are, in their 
turn, mainly determined by changes of the matrix elements ( p  1 P i p  + g )  of the effective 
pseudopotential V = V + V,, corresponding to g = ( l , l , l )  and states / p )  and Ip + g )  
near points K and U: from x = 0 to x = 0.1 the elements (KI v ( U )  rise from 71 to 
78 mRyd, while for example, the elements (W I PI W') withg = (2,0,0) for lp) states near 
the W points change twice as slowly, from 119 to 125 mRyd. 

In All -xMg, alloys the a(&) changes withx are much weaker (when the concentration 
expansion is taken into account). For example, fromx = 0 to x = 0.1 the ATK difference 
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decreases only by 5% (both the (KI VI U) and (W 181 W’) elements decrease by approxi- 
mately4%). Therefore, then(&) functionsforx = 0-0.15, shown by curves A, G, Hand 
J in figure 1, are rather similar, and eF reaches the point of singularity E, at x 0.15. Let 
us note that in the absence of the expansion, i.e. if Q ( x )  = Qo = constant, the form of 
n ( ~ )  noticeably changes with x ,  and n ( ~ )  has a significant singularity at x = 0.11 (see 
curve I in figure 1). 

The results for pressure and elastic constants are shown in tables 1-3 and in figure 2. 
Instead of the Voigt constants C,, we present the Fuchs-type moduli B ,  which have a 
clearer meaning of the bulk modulus B and shear constant B33 or B44, including the case 
of non-zero pressure p # 0 [20] : 

B1, = B = $(Cll + 2C12 + p)  

B33 = i(C11 - C12) - P 
B M  = CM -p .  (6) 

The theoretical equilibrium volume Q, is connected with the calculatedp = p(Q) as 
Q, = Q(l + p / B ) .  The NFS contribution to the shear constants B,, in tables 2 and 3 is 
defined as the difference between the total B,, and the Fermi surface contribution to it: 

BZFS = B ,, - BZs = B F  + B F d  + B,d,C (7) 
where we allow for B,”,” = B;; = 0. In the evaluation of the Young modulus E = 
3G(1 + G/3B)-’, the values of the ‘averaged’ shear constant G estimated according to 
Voigt, Gv = 6(2B33 + 3BM), and Reuss, GR = 5(2/B33 + 3/B44)-1 [21], coincide 
within a per cent, and so we take G = &(GR + Gv). Values ofp, B ,  and E are given in 
GPa everywhere. 

Table 1 shows the results for pure Al. To compare the calculatedp with experiment, 
one has to add the phonon contribution Pph to its value in table 1. According to the 
estimate [22], pph is about 0.9 at T = 0. Then the calculated volume Q, differs from the 
observed one only by 1.5%. The calculated B ,  also agree well with the experiment. This 
shows the sufficient accuracy of the first-principles methods used for pure Al. Table 1 
also shows that contributions B$C of the Coulomb interaction of the inhomogeneous 
components of the electron density p( r )  - ( p )  are small in A1 (as well as in the AI-Li 
and A1-Mg systems) which seems to be natural for ‘nearly-free-electron’ metals. Thus, 
the shear constant values are determined practically only by the ‘band’ and Madelung 
contributions. 

Figure 2 displays vivid manifestations of the ‘band’ effects in the shear constants of 
the alloys considered. In accordance with the aforementioned general 
considerations [8], the closeness of to the sharp minimum points of IZ(E) results in the 
steep rise of the calculated B,,(x) and E(x)  in All-xLix near x = 0.05. Even so, the rise 
of B33(x) noticeably exceeds that of B44(x) , which agrees qualitatively with 
experiments [2]. At the same time the calculated bulk modulus (table 2) varies slowly 
withx, in accordance with its weak sensitivity to the band effects under consideration [8] 
(in the experiment [2] d In B/du = -0.8). Thep-values in table 2 reveal a tendency to 
contraction with risingx, and the calculated (d In Q/&) value is even 3-5 times as great 
astheobservedone [3,4]. IntheA1l-xMg,alloys, wherethedropinn(&) withxismuch 
weaker, the calculated B,(x)  and E(x)  values increase rather slowly at x 5 0.13, B(x)  
monotonically decreases, and p(x) implies a concentration expansion (though being 
approximately one-third of the observed one [ l ,  181). Near x, = 0.15, where reaches 
E , ,  the calculations again show some band rise of B, , (x)  and E ( x ) .  However, here the 
singularity in I Z ( E )  is much weaker than that in the AI-Li case. Thus, the possibility of 
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its smearing and weakening in real alloys seems to be much more probable. Therefore, 
the calculations correctly describe all the qualitative features of the B , ( x )  and S2&) 
dependences in the alloys considered, while the quantitative disagreements with experi- 
ments may be connected with the disregarded effects discussed below. 

Tables 2 and 3 also illustrate the importance of different contributions to the band 
anomalies of B,,(x). In accordance with the considerations in [&lo], these anomalies 
are, mainly, determined by the Fermi surface contribution BLs, while the rest of the 
terms vary smoothly and monotonically withx. The two bottom lines of table 3 illustrate 
the effects of the concentration expansion on B, (x )  in All -xMgx. The comparison of the 
third and fifth lines shows that slight changes in S2 (corresponding, in particular, to 
different experimental data, [l] and [MI) have little effect on B,. However, the total 
absence of the expansion (line 6 )  would result in a sharp band rise of B,,(x) near x = 0.1 
in accordance with the above-mentioned closeness of cF to the strong singularity point 
in n(E). 

To compare the calculations with experiments, one should take into account that in 
the VCA employed we disregard the effects of smearing of the band singularities con- 
sidered due to non-conservation of the electron quasimomentum in a disordered alloy 
and the resulting smearing of the BZ and the FS. Though the theoretical [23] and exper- 
imental [24,25] estimates show that in a number of alloys such a smearing is not large, 
in principle, it must smooth over all the singularities in n ( ~ )  and the related anomalies 
in the physical properties. This can be particularly true for such strong singularities as 
those for AI-Li alloys in figure 1 (the scale of smoothing can be estimated, for example, 
employing the coherent potential approximation for n ( ~ ) ) .  The weakening of the singu- 
larities (i.e. the sharpness of the band maximum in the structural stability at cF = E , )  

should evidently decrease the values of B,,, B and the rise of the cohesion, i.e. of the 
tendency towards system contraction, thereby bringing all the above theoretical results 
closer to the observed ones. In addition, a part of the deviations from experiment can 
be due to the disregarded phonon and temperature effects, as well as to the imperfection 
of the alloys investigated, i.e. the presence of defects and impurities there. For example, 
the E-value for single-crystal A1 at T =O [18] noticeably exceeds those for poly-crystal 
A1 at room temperature T ,  [l, 51, see figure 2. Note also that a 'break' in the E ( x )  
dependence for All-xLix seen in experiments [l], corresponds to the valuesx = 0.03 at 
which the maximum corrosion resistance has also been observed [ 181. This might imply 
that for these real alloys the critical point = E ,  corresponds to x y p  = 0.03 rather than 
to x,  = 0.05, as in our calculations. 

Let us now remark on the estimates of C ,  for the ordered 6' phase, Al,Li, of [2]. At 
the experimental T 3  T, ,  the 6' phase precipitates out of the disordered a phase at 
x 3 x,  -- 0.05. To estimate C:' from the measured Cy in the two-phase region, Muller 
et a1 [2] used the relation 

cy = (1 -f)c; + fc;' (8) 
where f is the volume of the 6' phase. The values Cf = C;(x, T )  at the equilibrium 
curve T = ( x )  in (8) were obtained by the x- and T-linear extrapolation from the 
values measured at x 6 0.04. However, the values of C i ' ( T )  found show an extremely 
sharp temperature dependence, about five times as strong as that measured in the a 
phase. This seems to be very strange, and even more so since the moduli themselves 
increase with ordering, Ci' > Cf , and thus the lattice stiffens. One may suppose that 
this sharp dependence of Ci' on Tis actually spurious and was obtained only due to the 
unjustified x-linear extrapolation for C;(x) in (8). Indeed, if the rise of B,, with x is due 
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to the band-structure effects discussed above, then at x > x ,  = 0.05 the rise must slow 
down and the slope of the B,(x)  curves must decrease. Thus at large T ,  the Ct(x,  T )  
values on the curve T,- 6t  ( x )  should decrease, while C$' (found from (8)) should increase 
as compared with the estimates made in [2]. This must diminish the sharp drop of 
Cg' with T ,  obtained by Muller et a1 [Z]. Let us also note that the solubility limit for 
All-xLix alloys at T -  T, ,  xki = 0.05, as well as that for Al1_,Mg, alloys at high T ,  
x z g  = 0.18 [18], are close to the critical values discussed above, x? = 0.05, x,"g = 0.15, 
corresponding to the equality cF = E,. This can reflect the maximum band stability of 
the disordered a phase at these points. 

To conclude, the unusual concentration dependences of Bij(x) and Q ( x )  in the 
All -,Li, and All -xMgx alloys are, apparently, explained by the band-structure effects 
discussed above, and the calculations presented describe all the qualitative features of 
these dependences. To verify and specify these considerations, further experimental 
investigations of these alloys are obviously desirable, in particular, low-temperature 
measurements of thermopower, specific heat and thermal expansion [23-25,8], as well 
as direct measurements of B&) in the a phase of All -,Li, at x b 0.05. 

The authors are much indebted to L L Rokhlin for attracting their attention to the 
present problem, as well as to A V Trefilov for helpful discussions. 
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